МИНИСТЕРСТВО ЭНЕРГЕТИКИ РЕСПУБЛИКИ КАЗАХСТАН Республиканское государственное предприятие на праве хозяйственного ведения «НАЦИОНАЛЬНЫЙ ЯДЕРНЫЙ ЦЕНТР РЕСПУБЛИКИ КАЗАХСТАН» Филиал «Институт атомной энергии» (Филиал «ИАЭ» РГП «НЯЦ РК»)

УДК 621.039

Кожабаев Заманбек Бауржанович

ИССЛЕДОВАНИЕ ВОЗМОЖНОСТИ УСТАНОВКИ ЖАРОПРОЧНОГО ЗАЩИТНОГО КОЖУХА ОТ ВОЗДЕЙСТВИЯ РАСПЛАВОВ ПРИ ПРОВЕДЕНИИ ВРУТРИРЕАКТОРНЫХ ЭКСПЕРИМЕНТОВ

Работа, представляемая на конференцию-конкурс НИОКР молодых ученых и специалистов Национального ядерного центра Республики Казахстан

(инженерно-техническое направление)

Руководитель: Иркимбеков Р.А., Начальник лаборатории исследований нейтронно-физических и теплофизических характеристик облучательных устройств

г. Курчатов, 2020 г.

ABTOP

Кожабаев Заманбек Бауржанович

инженер лаборатории исследований теплофизических и нейтронно-физических характеристик облучательных устройств Филиала «Институт атомной энергии» РГП «НЯЦ РК», 1995 года рождения, образование высшее (ГУ имени Шакарима, 2015 г.), специальность – техническая физика, квалификация по диплому – бакалавр технической физики, магистратура (ГУ имени Шакарима, 2017 г.), специальность – техническая физика квалификация по диплому – магистр технических наук, работает с 2017 года в Филиале «ИАЭ» РГП «НЯЦ РК», общий стаж работы – 2,5 года.

СПИСОК ИСПОЛНИТЕЛЕЙ

Начальник лаборатории исследований нейтронно-физических и теплофизических характеристик облучательных устройств

Инженер лаборатории исследований нейтронно-физических и теплофизических характеристик облучательных устройств

Иркимбеков Р.А. подпись, дата 10.04.2020

Кожабаев З.Б. Подпись, дата 10.04. 2020

КОЖАБАЕВ З.Б. ИССЛЕДОВАНИЕ ВОЗМОЖНОСТИ УСТАНОВКИ ВОЛЬФРАМОВОГО КОЖУХА ДЛЯ ЗАЩИТЫ ОТ ВОЗДЕЙСТВИЯ РАСПЛАВОВ

Работа, представляемая на конференцию-конкурс НИОКР молодых ученых и специалистов Национального ядерного центра Республики Казахстан от Филиала «ИАЭ» РГП «НЯЦ РК»

071100, г. Курчатов, ул. Красноармейская, 10, тел. (7-322-51) 9-41-01 (вн.) E-mail: kozhabaev@nnc.kz

ΡΕΦΕΡΑΤ

Конкурсная работа содержит 13 страниц, 4 рисунка, 5 источников.

Объект исследования: Жаропрочный кожух силового корпуса испытательной ампулы в реакторе ИГР.

Цель исследования: Повышение безопасности проведения реакторных испытаний.

Задачи исследования:

- подбор жаропрочных материалов;

- определение допустимых размеров кожуха;

- построение нейтронно-физических моделей экспериментальных устройств с вольфрамовым кожухом;

- обработка и анализ полученных данных.

Методика исследования:

– компьютерное моделирование нейтронно-физического состояния реактора ИГР с экспериментальным устройством в центральном экспериментальном канале;

– нейтронно-физические расчеты проводились с помощью программы MCNP5.

Результаты работы:

Получены необходимые данные для улучшения безопасности проводимых испытаний ЭУ в рамках темы НТП 01.01 «Исследования процессов, происходящих при тяжелой аварии в активной зоне реактора на быстрых нейтронах».

Актуальность работы:

В настоящее время продолжаются исследования, направленные на предотвращение аварийных ситуаций с плавлением материалов активной зоны реактора или сведения их к минимуму.

В данной работе в качестве дополнительной защиты силового корпуса реактора ИГР от воздействия расплавов предлагается использование материалов, которые имеют высокую температуру плавления, долгий срок службы и устойчивы к радиационным нагрузкам. Это позволит обезопасить внутриреакторные испытания при высоких температурах.

Научная новизна: заключается в исследовании влияния различных жаропрочных материалов, установленных для защиты реактора ИГР от воздействия расплава экспериментального устройства, на нейтронные характеристики экспериментального устройтсва.

Практическая ценность: заключается в повышении безопасности испытаний на реакторе ИГР.

Личный вклад автора: построение нейтронно-физических моделей, проведение нейтронно-физических расчетов, обработка и анализ результатов.

Степень завершенности работы:

Использование представленных материалов в зависимости от целей проводимых экспериментов позволит обезопасить наружный корпус в условиях термической нагрузки со стороны топлива экспериментального устройства.

ОБОЗНАЧЕНИЯ И СОКРАЩЕНИЯ

ИГР – импульсный графитовый реактор;

TBC – тепловыделяющая сборка;

ЦАЗ – центр активной зоны;

ЦЭК – центральный экспериментальный канал;

ЭУ – экспериментальное устройство.

СОДЕРЖАНИЕ

ОБОЗНАЧЕНИЯ И СОКРАЩЕНИЯ	4
ВВЕДЕНИЕ	6
ОСНОВНАЯ ЧАСТЬ	7
1 Методика расчетов	7
2 Описание модели #1	7
3 Описание модели #2	8
4 Результаты расчетов	9
ЗАКЛЮЧЕНИЕ	12
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ	13

ВВЕДЕНИЕ

В настоящее время в мире ежегодно проводятся исследования, направленные на исключение аварийных ситуаций во время проведения экспериментов в реакторах. Исследования в рамках данной темы направлены на поиск эффективных способов предотвращения аварийных ситуаций или сведения их к минимуму.

Эксперименты с различными видами устройств на реакторе ИГР предполагают плавление твэлов при высокой температуре с образованием бассейна расплава топлива и стали в полости чехла ТВС. Для предотвращения аварийных случаев выхода расплава топлива из полости чехла ТВС основным ожидаемым результатом исследований является улучшение безопасности проводимых испытаний за счет добавления защитного кожуха с жаростойким материалом в ЦЭК реактора ИГР. Данный кожух будет использоваться для обеспечения дополнительной защиты наружного корпуса в условиях контактной термической нагрузки со стороны расплава топлива экспериментального устройства.

ОСНОВНАЯ ЧАСТЬ

1 МЕТОДИКА РАСЧЕТОВ

При проведении расчетов использовалась нейтронно-физическая модель реактора ИГР [1]. Расчеты выполнены с использованием расчетного кода MCNP5 [2]. Расчетная модель реактора полностью соответствуют конструкции и учитывают неравномерность распределения концентрации урана в объеме активной зоны. Состояние реактора близкое к критическому, достигается соответствующим положением регулирующих стержней. Отметка «0» соответствует нижнему торцу неподвижной зоны реактора [3].

Для сравнения использовались 4 модели двух ЭУ с разными видами материалов в виде защитного кожуха вокруг ТВС, опущенных в ЦЭК реактора ИГР. Моделирование экспериментального устройства осуществлялось с соблюдением основных размерноматериальных характеристик [4].

В процессе проведения расчетов рассмотрены следующие конфигурации расчетных моделей:

- исходная конфигурация, в которой температура кладки реактора составляет 294К с энергией в 5200 МДж и 700К для ЭУ;

- конфигурация ЭУ с добавлением вольфрамового защитного кожуха;

- конфигурация ЭУ с добавлением танталового защитного кожуха;

- конфигурация ЭУ с добавлением углепластикового защитного кожуха.

Расчет высотного распределения энерговыделения в топливе ТВС проведен с разбиением на слои по 10 мм. Отношение энерговыделения в топливе к энерговыделению в реакторе вычислено по формуле [5]:

$$k = \frac{q}{Q} \cdot \frac{1}{m},$$

где *q* – энерговыделение в топливе, о.е.;

Q – энерговыделение в реакторе ИГР, о.е.;

m – масса топлива, г.

2 ОПИСАНИЕ МОДЕЛИ #1

Модельная ТВС состоит из твэлов расположенных в два ряда (Рисунок 1, а). Во внутреннем ряду расположено 20 твэлов, а в наружном – 26. Центр топливного столба смещен на 500 мм относительно ЦАЗ реактора ИГР. Размещение твэлов в ТВС представлено на рисунке 1, б.

В составе твэлов использовались топливные таблетки типа БН-350 из диоксида урана с обогащением 17 % по 235U в активной части (поз.1, рисунок 1) и с обогащением 0,27 % по 235U в бланкетной части (поз.2, рисунок 1) топливного столба с плотностью от 10300 до 10800 кг/м³. Наружный диаметр топливного столба составляет – 5,9 мм, внутренний – 1,5 мм с длиной активной части 185 мм в наружном ряду и 170 мм во внутреннем и бланкетной частью в 15 мм. Общая масса топливных таблеток составляет 2,702 кг, где масса активной части топливных столбов – 2,479 кг и бланкетной части – 0,223 кг. Материалом оболочки использовалась сталь марки 09Х16Н15М3Б, наружным диаметром – 6,9 мм и внутренним – 6,1 мм.

Рисунок 1 – Модель #1 экспериментального устройства

3 ОПИСАНИЕ МОДЕЛИ #2

В модельной ТВС используется однорядная компоновка, состоящая из 24 твэлов (Рисунок 2). Центр топливного столба соответствует ЦАЗ реактора ИГР.

Рисунок 2 – Модель #2 экспериментального устройства

В составе твэлов применены топливные таблетки типа БН-350 из диоксида урана с обогащением 17 % по 235U в активной части (поз.1, рисунок 2) и с обогащением 0,27 % по 235U в бланкетной части (поз.2, рисунок 2) топливного столба с плотностью от 9300 до 10300 кг/м³. Наружный диаметр топливного столба составляет – 5,9 мм, внутренний – 1,5 мм с длиной активной части 435 мм и бланкетной части 15 мм. Общая масса топливных таблеток составляет 2,85 кг, где масса активной части топливных столбов – 2,75 кг и бланкетной части – 0,10 кг. Материалом оболочки использовалась сталь марки X16H15M3Б толщиной 0,8 мм, наружным диаметром – 6,9 мм и внутренним – 6,1 мм.

4 РЕЗУЛЬТАТЫ РАСЧЕТОВ

В результате проведенных нейтронно-физических расчетов определено соотношение между энерговыделением в топливе модельной ТВС и энерговыделением в реакторе.

На рисунке 3 представлены диаграммы отношения энерговыделения в топливе чехла ТВС модели #1 к энерговыделению в реакторе ИГР по высоте топливного столба для наружного и внутреннего рядов твэлов. Как видно из диаграммы наиболее подходящим материалов с точки зрения сохранения удельной мощности в экспериментальном устройстве является углепластик из-за того, что падение удельной мощности в топливе ЭУ составило ~ 7 %, когда при использовании вольфрама это значение составило ~23 %, а при использовании тантала ~ 31 %.

На рисунке 4 представлены распределения энерговыделения для бланкетной и активной частей чехла ТВС модели #2. В данной модели падение удельной мощности при использовании углепластика составило 8 %, вольфрама 20 % и тантала 28 %.

Рисунок 3. Диаграмма распределения энерговыделения внешнего и внутреннего рядов твэлов чехла ТВС модели #1

Рисунок 4. Диаграмма распределения энерговыделения в бланкетной и активной частях чехла ТВС модели #2

Средние значения полученных отношений энерговыделения в топливе чехла ТВС к энерговыделению в ИГР для обеих моделей показаны в таблицах 1, 2.

В таблице 3 представлены расчетные данные отношения энерговыделения защитного кожуха к энерговыделению в реакторе для обеих моделей ЭУ.

Для сравнения используемых моделей рассчитано отношение энерговыделения в кожухе ЭУ к энерговыделению в ИГР на отрезке от (99 ÷ 104) см относительно нижнего торца неподвижной зоны реактора, представленной в таблице 4. По полученным данным отношения энерговыделений в адиабатическом приближении рассчитаны температуры материалов кожуха ЭУ в предположении, что интегральная мощность ИГР составила 5200 МДж:

- при использовании вольфрама в модели #1 до 1700 К, в модели #2 до 2000 К;

- при использовании тантала в модели #1 до 1704 К, в модели #2 до 2091 К;

- при использовании углепластика в модели #1 до 427 К, в модели #2 до 481 К.

Таблица 1 – Среднее значение отношения энерговыделения внешнего ряда топлива чехла ТВС к энерговыделению в реакторе ИГР модели #1

Наименование	Отношение энерговыделения в топливе к энерговыделению в реакторе, $\times 10^{-6} 1/\Gamma \pm 0,001$				
	Без защитного кожуха	Вольфрам	Тантал	Углепластик	
Внешний ряд	0,8627	0,7125	0,6562	0,8646	
Внутренний ряд	Знутренний 0,6611 ряд		0,5046	0,6564	

Таблица 2 – Среднее значение отношения энерговыделения бланкетной части топлива чехла ТВС к энерговыделению в реакторе ИГР модели #2

Наименование	Отношение энерговыделения в топливе к энерговыделению в реакторе, $\times 10^{-6} 1/\Gamma \pm 0,001$				
	Без защитного кожуха	Вольфрам	Тантал	Углепластик	
Бланкетная часть	0,0962	0,0833	0,0825	0,0932	
Активная часть	1,6595	1,3563	1,2561	1,5922	

Таблица 3 – Отношение энерговыделения в защитном кожухе ЭУ к энерговыделению в реакторе ИГР

Наименование	Отношение энерговыделения в кожухе к энерговыделению в реакторе, $\times 10^{-7} \ 1/\Gamma \pm 0{,}001$			
	Вольфрам	Тантал	Углепластик	
Модель #1	0,3409	0,3979	0,1722	
Модель #2	0,3171	0,3730	0,1611	

Таблица 4 – Отношение энерговыделения отдельного отрезка защитного кожуха ЭУ к энерговыделению в реакторе ИГР

Наименование	Отношение энерговыделения в кожухе к энерговыделению в реакторе, $\times 10^{\text{-7}} \ 1/\Gamma \pm 0{,}001$					
	Вольфрам		Тантал		Углепластик	
99	0,3584	0,3469	0,4097	0,4149	0,1780	0,1712
100	0,3530	0,3486	0,4009	0,4102	0,1713	0,1912
101	0,3272	0,3382	0,4069	0,4118	0,1713	0,1807
102	0,3281	0,3708	0,4044	0,4030	0,1683	0,1713
103	0,3164	0,3399	0,3629	0,4082	0,1735	0,1741
104	0,3403	0,3685	0,3773	0,4170	0,1762	0,1690

ЗАКЛЮЧЕНИЕ

Для предотвращения аварийных ситуаций нами была предложена установка дополнительного кожуха для защиты наружного корпуса экспериментального устройства во время проведения испытаний.

В данной работе представлены исследования влияния материала для кожуха на характеристики экспериментального устройства, каждый из которых имеет свои положительные стороны:

- применение вольфрама позволит выдерживать большие температуры относительно других материалов из-за высокой температуры плавления (3700 К). Примечательно, что это значительно превышает температуру расплава диоксида урана (около 3200 К), но при этом в значительной степени снижается мощность испытываемого устройства. Кроме этого, вольфрам греется в процессе пуска и поэтому не может быть использован в контакте со стальными материалами. Но это снижает градиент температуры при контакте с расплавом топлива.

- в отличие от вольфрама тантал имеет менее высокую температуру плавления (3200 К) но был выбран из-за его устойчивости к различным типам химических воздействий. Тантал произвел большее негативное влияние на исследуемые характеристики в сравнении с вольфрамом.

- использование углепластика значительно уменьшает потери в мощности устройства, имеет температуру плавления от (1800 ÷ 3000) К и при высоком градиенте температур становится хрупким.

1. Компьютерная модель реактора ИГР для стационарных нейтронно-физических расчетов: а. с. № 2738 от 27.12.16 Республика Казахстан / А.Д. Вурим, В.М. Котов, Р.А. Иркимбеков, Л.К. Жагипарова, А.А. Байгожина.

2. MCNP-5.1.40 Monte-Carlo N-Particle Transport Code; Los Alamos National Laboratory; Los Alamos, New Mexico. – April 24, 2003.

3. Расчетное исследование нейтронно-физических характеристик экспериментального устройства / Л.К. Жагипарова, В.М. Котов, // журнал «Вестник» НЯЦ РК, ВЫП. 3 (75), сентябрь 2018 г.

4. Энерговыделение в модельной ТВС при тепловых испытаниях в импульсной реакторной установке: дис. канд. физ-мат. наук.: 01.04.14 / Р. А. Иркимбеков // НИ ТПУ. – Томск, 2016, – 129 с.

5. Определение распределения энерговыделения в канале ID3 реактора ИГР / Л.К. Жагипарова, Р.А. Иркимбеков // Актуальные вопросы мирного использования атомной энергии: доклады международной конференции-конкурса молодых ученых и специалистов. Алматы, 06-08 июня 2012 г. – Алматы, 2012. – С. 179–189.