МИНИСТЕРСТВО ЭНЕРГЕТИКИ РЕСПУБЛИКИ КАЗАХСТАН

Республиканское государственное предприятие на праве хозяйственного ведения «НАЦИОНАЛЬНЫЙ ЯДЕРНЫЙ ЦЕНТР РЕСПУБЛИКИ КАЗАХСТАН» Филиал «Институт атомной энергии» (Филиал «ИАЭ» РГП «НЯЦ РК»)

УДК 621.039.5

Хасенова Салтанат Мұратқызы

РАЗРАБОТКА ОПТИМИЗАЦИОННОЙ МОДЕЛИ В ПРОГРАММЕ ANSYS FLUENT ДЛЯ ТЕПЛООБМЕННИКА НАТРИЕВОЙ ПЕТЛИ

Работа, представленная на XIX конференцию-конкурс НИОКР молодых ученых и специалистов Национального ядерного центра Республики Казахстан

(инженерно-техническая)

Руководитель: Акаев А.С., начальник отдела внереакторных испытаний

АВТОР **Хасенова Салтанат Мұратқызы,**

инженер лаборатории теплофизики реакторных установок

Филиала «Институт атомной энергии» РГП «НЯЦ РК», 1995 года рождения, образование высшее: (Инновационный Евразийский Унверситет, 2016г), специальность – технологические машины и оборудования, квалификация по диплому – бакалавр-инженер. работает в Филиале «ИАЭ» РГП «НЯЦ РК» с 2018 г.,

общий стаж работы 2 года.

СПИСОК ИСПОЛНИТЕЛЕЙ

Руководитель работы, начальник отдела внереакторных испытаний

Исполнитель работы, инженер лаборатории экспериментальной теплофизики

Соисполнитель работы, начальник группы лаборатории экспериментальной теплофизики

10.04.2 02 ° А.С. Акаев

Гасу 1004 р. С.М. Хасенова подпись, дата

Подпись, дата А.С. Хажидинов

XACEHOBA C.M

РАЗРАБОТКА ОПТИМИЗАЦИОННОЙ МОДЕЛИ В ПРОГРАММЕ ANSYS FLUENT ДЛЯ ТЕПЛООБМЕННИКА НАТРИЕВОЙ ПЕТЛИ

Работа, представляемая на конференцию-конкурс НИОКР молодых ученых и специалистов

Национального ядерного центра Республики Казахстан от Филиала «ИАЭ» РГП «НЯЦ РК»

071100, г. Курчатов, ул. Бейбіт атом, 10, тел. (7-722-51) 2-35-49, 42-29 (вн.) E-mail: khasenova@nnc.kz

РЕФЕРАТ

Конкурсная работа содержит 11 страниц, 3 рисунков, 3 таблицы, 3 источников.

НАТРИЕВАЯ ПЕТЛЯ, НАТРИЕВЫЙ ТЕПЛООБМЕННИК, ОПТИМИЗАЦИЯ ГЕОМЕТРИЧЕСКИХ ПАРАМЕТРОВ, ПАРАМЕТРЫ ТЕПЛОНОСИТЕЛЕЙ, РАСЧЕТНАЯ МОДЕЛЬ

Объект исследования: натриевый теплообменник

Цель работы: разработка компьютерной модели натриевого теплообменника с оптимизированными геометрическими параметрами.

Задачи исследований: разработать расчетную модель натриевого теплообменника с оптимизированными геометрическими параметрами для решения многокритериальной задачи оптимизации.

Методика исследований: с помощью комплекса расчетных программ ANSYS FLUENT моделируется натриевый теплообменник, определяются параметры теплоносителей.

Актуальность: в филиале ИАЭ проводятся работы по разработке натриевой петли для проведения научных экспериментов. По этой причине необходимо разработать натриевый теплообменник, работающий при температуре до 450°C и не требующий сложных технологий в изготовлении.

Научная новизна: предложена конструкция натриевого теплообменника, способного обеспечить необходимые параметры теплоносителей, работающего при высоких температурах и давлениях.

Практическая ценность: результаты расчета могут быть использованы для изготовления натриевого теплообменника с оптимальными геометрическими параметрами, что позволяет сократить металлоемкость и снизить стоимость газодувок.

Результаты выполнения работы:

- разработана расчетная модель теплообменного устройства натриевой петли с решением многокритериальной задачи оптимизации;
- сформирован оптимальный диапазон управляемых параметров: высота теплообменника, длина трубки завитой части теплообменника, общая длина трубки теплообменника, число витков, расстояние между витками теплообменника, внутренний диаметр трубки теплообменника, толщина стенки трубки теплообменника;
 - определены расход и распределение значений температуры теплоносителей;
 - Личный вклад автора: расчет, анализ расчетных данных.

Степень завершенности работы: - 100%

СОДЕРЖАНИЕ

ВВЕДЕНИЕ	5
1. Описание устройства	
2. Расчет устройства	
3. Результаты расчета	
ЗАКЛЮЧЕНИЕ.	
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ	

ВВЕДЕНИЕ

В Институте Атомной Энергий проводятся работы по разработке натриевой петли для проведения научных экспериментов. В натриевой петле будут проводиться теплофизические и иные исследования по программе строительства быстрых натриевых реакторов. Она позволит выполнять эксперименты в условиях, приближенных к условиям активной зоны с точки зрения температур и расходов натрия. Новая петля будет также использоваться для обкатки технологий насосов, парогенераторов, теплообменников и других устройств, предназначающихся для будущих быстрых натриевых реакторов. По этой причине необходимо разработать натриевый теплообменник, не требующий сложных технологий в изготовлении.

Оптимальная конструкция — теплообменник, отвечающий основным требованиям, сформулированным в виде критериев конструирования. Поэтому задача оптимизации теплообменного оборудования, предусматривающая уменьшение расходов всех видов ресурсов на стадии создания и последующей эксплуатации, является актуальной и имеет существенное значение для атомной отрасли.

Теплообменник - техническое устройство, в котором осуществляется теплообмен между двумя средами, имеющими различные температуры. Теплообменники применяются в технологических процессах нефтеперерабатывающей, нефтехимической, химической, атомной, холодильной, газовой и других отраслях промышленности, в энергетике и коммунальном хозяйстве.

1 Описание устройства

Внешний вид расчетной модели теплообменного устройства приведен на рисунке 1. Рассматриваемый на рисунке теплообменник — змеевиковый. Эти аппараты состоят из вертикального цилиндрического стального корпуса. Внутри корпуса расположен змеевик, состоящий из стальной трубы, свернутой в виде спирали (змейки). Концы змеевика выходят из корпуса через крышки. Теплообмен в аппарате происходит через стенки змеевика.

Стальная труба изогнута в виде спирали и размещается внутри цилиндрического воздушного канала соосно ему. По каналу проходит воздух, а натрий прокачивается через змеевик.

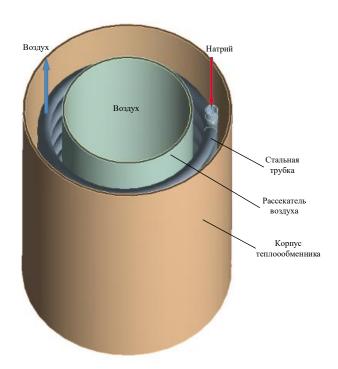


Рисунок 1. Расчетная модель теплообменного устройства

2 Расчет теплообменного устройства

Исходные данные и условия расчета

Для расчетной модели были заданы следующие условия однозначности:

- начальные условия: температура подачи натрия в теплообменник 450° C; температура выхода натрия из теплообменника 190° C;
 - граничные условия: расход натрия 220 л/ч; максимальное давление в контуре натрия 4 кгс/см².
- физические условия: в качестве материала трубного элемента выбрана сталь, в качестве теплоносителя натрий.

Для определения геометрических параметров теплообменника необходимо вычислить коэффициент теплопередачи от охлаждаемого теплоносителя к нагреваемому. Линейный коэффициент теплопередачи

$$k_{l} = \frac{1}{\frac{1}{\alpha_{nq'd_{1}} + \frac{\ln\left(\frac{d_{2}}{d_{1}}\right)}{2 \cdot \lambda_{cl}} + \frac{1}{\alpha_{v'd_{2}}}}}.$$
(1)

Логарифмический перепад температуры между потоками при противотоке

$$\Delta t = \frac{(t_{na1} - t_{B2}) - (t_{na2} - t_{B1})}{ln(\frac{t_{na2} - t_{B1}}{t_{na2} - t_{B1}})}.$$
(2)

Длина трубки теплообменника

$$L = \frac{Q}{\Delta t \cdot \pi \cdot k_l}.$$
 (3)

Из приведенных выше формул следует, что длина трубки в завитой части должна быть не меньше 8,05 м. В таблицу 1 сведены геометрические параметры теплообменника.

Таблица 1. Основные геометрические параметры теплообменника

Параметр	Значение
Внутренний диаметр трубки теплообменника, м	0,02
Толщина стенки трубки теплообменника, м	0,002
Угол атаки теплоносителя (воздух), град	85
Расстояние между витками теплообменника, м	0,056
Число витков	8
Общая высота витков теплообменника, м	0,448
Высота теплообменника, м	0,528
Длина трубки завитой части теплообменника, м	8,05
Общая длина трубки теплообменника, м	8,15

На рисунке 2 приведена расчетная модель теплообменного устройства с основными геометрическими параметрами.

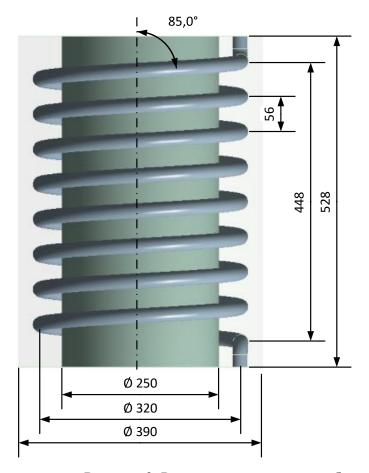


Рисунок 2. Расчетная модель теплообменника без внешнего корпуса

3 Результаты расчета

Результаты расчетов теплообменника с указанными геометрическими параметрами (рисунок 2, таблица 1) и противотоком теплоносителей показывают, что при расходе воздуха, равном 0,86 кг/с, среднее значение температуры натрия и воздуха на выходе из теплообменника равны 190,1 °C и 48,4 °C соответственно. На рисунке 2 приведено температурное поле натрия. В таблицу 2 сведены параметры теплоносителей.

На рисунке 3 приведено температурное поле натрия.

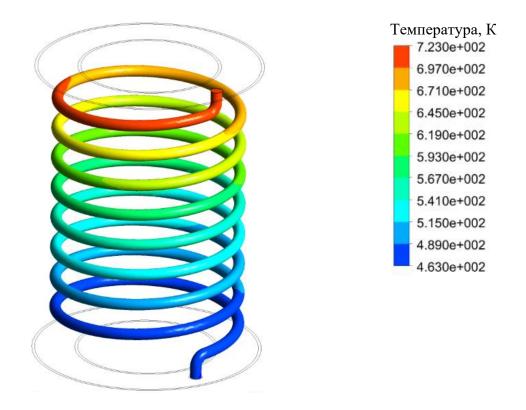


Рисунок 3. Распределение температурного поля натрия

Таблица 2. Параметры теплоносителей

Параметр	Значение
Температура натрия на входе в теплообменник, °С	450
Температура воздуха на входе в теплообменник, °С	25
Температура натрия на выходе из теплообменника, °С	190,1
Температура воздуха на выходе из теплообменника, °С	48,4
Расход воздуха, кг/с	0,86
Расход натрия, кг/с	0,054
Направление теплоносителей	противоток

ЗАКЛЮЧЕНИЕ

В ходе работ по данной теме получены следующие результаты:

- разработана расчетная модель теплообменного устройства натриевой петли с решением многокритериальной задачи оптимизации;
- сформирован оптимальный диапазон управляемых параметров: высота теплообменника, длина трубки завитой части теплообменника, общая длина трубки теплообменника, число витков, расстояние между витками теплообменника, внутренний диаметр трубки теплообменника, толщина стенки трубки теплообменника;
 - определены расход и распределение значений температуры теплоносителей;

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. Багоутдинова А.Г., Золотоносов Я.Д. Б14 Змеевиковые теплообменники. Моделирование, расчет: Монография / А.Г. Багоутдинова, Я.Д. Золотоносов. Казань: Изд-во Казанск. гос. архитект. строит. ун-та, 2016. 245 с.
- 2. Михеев, М. А. Основы теплопередачи / М. А. Михеев, И. М. Михеева. М. : «Энергия», 1977.
- 3. Служебная записка «О проведении расчета» от 19.12.2019 г. №33-470-02/4079 / ИАЭ РГП НЯЦ РК.